Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microb Ecol ; 87(1): 50, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466433

RESUMO

Intensive crop production leads to the disruption of the symbiosis between plants and their associated microorganisms, resulting in suboptimal plant productivity and lower yield quality. Therefore, it is necessary to improve existing methods and explore modern, environmentally friendly approaches to crop production. One of these methods is biotization, which involves the inoculation of plants with appropriately selected symbiotic microorganisms which play a beneficial role in plant adaptation to the environment. In this study, we tested the possibility of using a multi-microorganismal inoculum composed of arbuscular mycorrhizal fungi (AMF) and AMF spore-associated bacteria for biotization of the red raspberry. Bacteria were isolated from the spores of AMF, and their plant growth-promoting properties were tested. AMF inocula were supplemented with selected bacterial strains to investigate their effect on the growth and vitality of the raspberry. The investigations were carried out in the laboratory and on a semi-industrial scale in a polytunnel where commercial production of seedlings is carried out. In the semi-industrial experiment, we tested the growth parameters of plants and physiological response of the plant to temporary water shortage. We isolated over fifty strains of bacteria associated with spores of AMF. Only part of them showed plant growth-promoting properties, and six of these (belonging to the Paenibacillus genus) were used for the inoculum. AMF inoculation and co-inoculation of AMF and bacteria isolated from AMF spores improved plant growth and vitality in both experimental setups. Plant dry weight was improved by 70%, and selected chlorophyll fluorescence parameters (the contribution of light to primary photochemistry and fraction of reaction centre chlorophyll per chlorophyll of the antennae) were increased. The inoculum improved carbon assimilation, photosynthetic rate, stomatal conductance and transpiration after temporary water shortage. Raspberry biotization with AMF and bacteria associated with spores has potential applications in horticulture where ecological methods based on plant microorganism interaction are in demand.


Assuntos
Micorrizas , Rubus , Micorrizas/fisiologia , Esporos Fúngicos , Plantas/microbiologia , Bactérias , Clorofila , Água
2.
Cells ; 12(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37296672

RESUMO

The aim of this study was to examine the effect of the modified light spectrum of glass containing red luminophore on the performance of the photosynthetic apparatus of two types of lettuce cultivated in soil in a greenhouse. Butterhead and iceberg lettuce were cultivated in two types of greenhouses: (1) covered with transparent glass (control) and (2) covered with glass containing red luminophore (red). After 4 weeks of culture, structural and functional changes in the photosynthetic apparatus were examined. The presented study indicated that the red luminophore used changed the sunlight spectrum, providing an adequate blue:red light ratio, while decreasing the red:far-red radiation ratio. In such light conditions, changes in the efficiency parameters of the photosynthetic apparatus, modifications in the chloroplast ultrastructure, and altered proportions of structural proteins forming the photosynthetic apparatus were observed. These changes led to a decrease of CO2 carboxylation efficiency in both examined lettuce types.


Assuntos
Clorofila , Fotossíntese , Clorofila/metabolismo , Luz , Cloroplastos/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Lactuca/metabolismo
3.
Cells ; 11(19)2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36230991

RESUMO

The objective of this study was to investigate the response of the photosynthetic apparatus of the Venus flytrap (Dionaea muscipula J. Ellis) to UV-A radiation stress as well as the role of selected secondary metabolites in this process. Plants were subjected to 24 h UV-A treatment. Subsequently, chl a fluorescence and gas exchange were measured in living plants. On the collected material, analyses of the photosynthetic pigments and photosynthetic apparatus proteins content, as well as the contents and activity of selected antioxidants, were performed. Measurements and analyses were carried out immediately after the stress treatment (UV plants) and another 24 h after the termination of UV-A exposure (recovery plants). UV plants showed no changes in the structure and function of their photosynthetic apparatus and increased contents and activities of some antioxidants, which led to efficient CO2 carboxylation, while, in recovery plants, a disruption of electron flow was observed, resulting in lower photosynthesis efficiency. Our results revealed that D. muscipula plants underwent two phases of adjustment to UV-A radiation. The first was a regulatory phase related to the exploitation of available mechanisms to prevent the over-reduction of PSII RC. In addition, UV plants increased the accumulation of plumbagin as a potential component of a protective mechanism against the disruption of redox homeostasis. The second was an acclimatization phase initiated after the running down of the regulatory process and decrease in photosynthesis efficiency.


Assuntos
Droseraceae , Aclimatação , Antioxidantes/metabolismo , Dióxido de Carbono , Droseraceae/metabolismo , Fotossíntese/fisiologia , Plantas/metabolismo , Raios Ultravioleta
4.
Sci Rep ; 11(1): 4135, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33603085

RESUMO

The present study investigated the response of non-metallicolous (NM) and metallicolous (M) Alyssum montanum shoots cultured in vitro on a medium supplemented simultaneously with heavy metals (HMs) to identify mechanisms involved in alleviating metal-induced damage. Plant status in respect to photosynthetic apparatus efficiency was determined and linked with changes in biochemical composition of shoots, namely phenolic acids' and stress-related phytohormones. Results showed the considerable inter-ecotype differences in (1) the photosynthetic pigments' amount, (2) the functioning of membrane electron transporters as well as (3) the linear and alternative electron transport pathways, whose lower values were reported in NM than in M HM-treated culture. Photosynthetic apparatus protection in M specimens was assured by the activation of cinnamic acid synthesis (by phenylalanine ammonia lyase) and its further transformations to benzoic acid derivatives with high ability to counteract oxidative stress, that was accompanied by the overexpression of jasmonic acid stimulating antioxidant machinery. In turn, detrimental HM effects on NM shoots could result from the diminution of most phenolics' accumulation, and only the content of coumarate (produced by bifunctional phenylalanine/tyrosine ammonia lyase) and rosmarinic acid increased. All these together with an enhanced concentration of abscisic acid might suggest that NM strategy to cope with HMs is based mostly on a restriction of metal movement with transpiration flow and their limited distribution in leaves. Summarizing, our findings for the first time point out the physiological and metabolic adaptation of pseudometallophyte A. montanum to adverse conditions.


Assuntos
Brassicaceae/metabolismo , Brassicaceae/fisiologia , Hidroxibenzoatos/metabolismo , Fotossíntese/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Antioxidantes/metabolismo , Ciclopentanos/metabolismo , Ecótipo , Metais Pesados/metabolismo , Estresse Oxidativo/fisiologia , Oxilipinas/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Poluentes do Solo/metabolismo
5.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445673

RESUMO

Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.


Assuntos
Aclimatação , Lathyrus/fisiologia , Fotossíntese , Caules de Planta/fisiologia , Salinidade , Desenvolvimento Vegetal , Estresse Salino , Plântula/fisiologia , Estresse Fisiológico
6.
Int J Mol Sci ; 21(5)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182862

RESUMO

Ceylon leadwort (Plumbago zeylanica) is ornamental plant known for its pharmacological properties arising from the abundant production of various secondary metabolites. It often grows in lead polluted areas. The aim of presented study was to evaluate the survival strategy of P. zeylanica to lead toxicity via photosynthetic apparatus acclimatization. Shoots of P. zeylanica were cultivated on media with different Pb concentrations (0.0, 0.05, and 0.1 g Pb∙l-1). After a four-week culture, the efficiency of the photosynthetic apparatus of plants was evaluated by Chl a fluorescence measurement, photosynthetic pigment, and Lhcb1, PsbA, PsbO, and RuBisCo protein accumulation, antioxidant enzymes activity, and chloroplast ultrastructure observation. Plants from lower Pb concentration revealed no changes in photosynthetic pigments content and light-harvesting complex (LHCII) size, as well as no limitation on the donor side of Photosystem II Reaction Centre (PSII RC). However, the activity and content of antioxidant enzymes indicated a high risk of limitation on the acceptor side of Photosystem I. In turn, plants from 0.1 g Pb∙l-1 showed a significant decrease in pigments content, LHCII size, the amount of active PSII RC, oxygen-evolving complex activity, and significant remodeling of chloroplast ultrastructure indicated limitation of PSII RC donor side. Obtained results indicate that P. zeylanica plants acclimate to lead toxicity by Pb accumulation in roots and, depending on Pb concentration, by adjusting their photosynthetic apparatus via the activation of alternative (cyclic and pseudocyclic) electron transport pathways.


Assuntos
Aclimatação/fisiologia , Chumbo/toxicidade , Fotossíntese/fisiologia , Plumbaginaceae/fisiologia , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/fisiologia , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Plumbaginaceae/metabolismo
7.
J Photochem Photobiol B ; 201: 111679, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31710926

RESUMO

Plants from the family Droseraceae, especially Drosera sp. and Dionaea sp., are naturally rich in phenolic derivatives such as plumbagin, among others. Plumbagin is known both for its pharmacological significance and its protective properties against light stress. Light stress - high light intensity or/and light spectral composition - activates plants' response mechanisms including, among others, hormonal (salicylic acid, jasmonic acid) pathways and secondary metabolite (phenolic compounds, proline) pathways. Short-wavelength radiation, due to its high energy, will induce the synthesis of protective secondary metabolites, including those with pharmaceutical properties. The aim of the study was to describe and compare acclimation strategies of Drosera peltata and Dionaea muscipula to blue-red light in the context of phenolic compound accumulation, and salicylic acid, jasmonic acid and proline synthesis. For the first time, differences in the responses of D. muscipula and D. peltata to blue-red light (in the ratio 6:1) were established. In Dionaea sp., it was associated with the use of redox equivalents (in particular, plastoquinone pool) for the synthesis of primary metabolites used in the process of growth and development. In Drosera sp., a rapid adjustment of redox state led to the synthesis of secondary metabolites, constituting a reservoir of carbon skeletons and allowing for a quick defence response to stress factors. In both species, blue-red light did not induce the jasmonic acid pathway. However, the salicylic acid pathway was induced as an alternative to the phenolic compound synthesis pathway. Nevertheless, the applied blue-red light was not an effective elicitor of phenolic compounds in the plants examined.


Assuntos
Droseraceae/efeitos da radiação , Luz , Fenóis/metabolismo , Catalase/metabolismo , Clorofila/química , Droseraceae/química , Droseraceae/metabolismo , Peroxidação de Lipídeos , Malondialdeído/análise , Peroxidases/metabolismo , Fenóis/química , Prolina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA